population structure and dependencies

Notion of randomness, and independence makes sense sometimes e.g. in natural sciences, and keeps statistical theory relatively simple.

But population has structure, and people therefore have things in common; living in same area, going to the same school ... people cannot be regarded as ‘independent units’.
Examples

Pupils in schools

Individuals in areas

Workers in organisations
Brief History

• Problems of single level analysis, cross level inferences & ecological fallacy, highlighted in 1950s.

• In 1980s much discussion of school league tables (based on single level aggregate data), and need to take pupil exam score variations into account when comparing schools, not just single level analysis of school means.

• Key papers and books by Aitkin & Longford, Goldstein, and Raudenbush
Brief History

• Advances in computing power and estimation methods such as IGLS allowed models to be fitted with specialist software

• VarCL, HLM, ML2 > ML3 > MLn > MLwiN > STAT-JR
Brief History

- Focus was initially on hierarchical structures and especially pupils in schools
- Also longitudinal, geographical studies
- More recently moved to non hierarchical situations such as cross-classified models.
- Also methods such as MCMC and ever increasing computing power have allowed more realistically complex models to be estimated
Substantive applications in social statistics: non exhaustive list

- Education
- Longitudinal studies
- Geography
- Health
- Social Networks
- Psychology
Extensions: more levels

- Individuals in households in areas
- Pupils in classes in schools in regions
Extensions: people not at level 1

- Longitudinal studies, where the occasion is the first level of a hierarchy
- Multivariate studies with several y variables per individual to capture a latent variable: e.g. various test scores for maths based subjects all taken by the individual may indicate numeracy
Realistically complex structures

- **Cross classifications**: two pupils that sit next to each other in a school each live in a different local area of a city, but two people who live in the same local area each go to different schools

- Influence of *neighbourhood* and *school* on educational performance of *individual*
Realistically complex structures

- **Multiple membership models** during the course of secondary education, some pupils attend more than one school, perhaps because their parents move. Some pupils therefore members of more than one group. Weights reflect this - number of years in each school. Most pupils stay at same school.
Let’s focus on the two level situation for the rest of this session
A simple 2-level hierarchy

Level 1

pupil 1 pupil 2 pupil 3 pupil 1 pupil 2 pupil 3 pupil 4

Level 2

school 1 school 2
What data do we need?

- Individual units (often people), with their group indicators (e.g. School, Area).
- One or more response variable(s)
- In general we need more than one person per group
- In general we would expect to have at least 10 groups, 20 or more even better. Partly depends on what we want to do.
Two level example: pupils in schools

- Suppose we have data for 4000 pupils in 60 schools
- Including a measure of exam performance at 16 (y) and exam performance at 11 (x)
- perhaps also other explanatory variables: gender, age of school buildings, % pupils on free school meals.
- Suppose we want to relate y to x, what can we do.
Aggregate to school level

• We could aggregate the exam score at 11 and exam score at school level, so that we have 60 pairs of school means, rather than 4000 pairs of exam scores.

• We could regress school mean y on school mean x.

• However if we make inferences from that school level regression back to individual, we run into problems.

• “Ecological Fallacy” (Robinson, 1950).
Problems of single level analysis

- We could work at the pupil level, and ignore the schools.
- Then we are ignoring the context: each pupil goes to a particular school.
- We could add the 60 schools to the model as 59 dummy variables: fixed effects model.
- But that’s a lot of dummy variables - model quickly becomes very full of parameters.
Multilevel models

- Multilevel models allow us to look at different levels simultaneously: e.g. the pupil level and the school level.
- Don’t require a huge number of parameters.
- Also allow flexibility: e.g. the relationship between exam score at 11 and exam score at 16 can be different in different schools.
- Take into account different group sizes through the idea of ‘shrinkage’.
Inferences and assumptions

• Multilevel models sometimes called random effects models: partly because groups are themselves regarded as a random sample.

• If we have all groups in population can still regard these as sample; realisation of underlying population generating process. In short, can use multilevel models even if all the groups in our data.

• We can use multilevel models regardless of whether the population structure is directly of interest or not. E.g. we can apply a model based approach to reflect the way that the data were collected.
• Multilevel model with no explanatory variables

• i,j subscripts for pupil i in school j

• variance of u school component; variance of e pupil component; u and e assumed uncorrelated

• Hence allows us to see how much variation in the response is at level 2 and how much at level 1 prior to adding x variables to model

• level 1 and level 2 variance add up to total variance
Variance components model
Simple regression model

\[y_i = \beta_0 + \beta_1 x_i + e_i \]

- Single level model
- relates response \((y)\) for pupil \(i\) to explanatory variable \((x)\) for pupil \(i\)
- Doesn’t take school into account
Single level regression model

\[y \]

\[\beta_0 \]

\[x \]
Random intercepts model

\[y_{ij} = \beta_0 + \beta_1 x_{ij} + u_j + e_{ij} \]

- Multilevel model: combines variance components with single level model
- Relates response \((y)\) for pupil \(i\) in school \(j\) to explanatory variable \((x)\) for pupil \(i\) in school \(j\)
- Also allows the school mean performance to vary
- Can plot school level residuals \((u_j)\) and their confidence intervals to fairly compare schools. “caterpillar plots”.
Random intercept model
Random intercept model

y

u_1

β_0

x
Random intercept model

\[y \]

\[x \]

\[\beta_0 \]

\[u_{11} \]
Random slopes model

\[y_{ij} = \beta_0 + \beta_{1j} x_{ij} + u_j + e_{ij} \]

- Multilevel model
- Relates response \((y)\) for pupil \(i\) in school \(j\) to explanatory variable \((x)\) for pupil \(i\) in school \(j\)
- Also allows the school mean performance to vary
- Also allows relationship between \(y\) and \(x\) to be different from school to school
Adding level 2 variables

\[y_{ij} = \beta_0 + \beta_1 x_{1ij} + \beta_2 \bar{x}_{2j} + \beta_3 x_{3j} + u_j + e_{ij} \]

- Multilevel model: extending the random intercepts model
- Adds two level 2 (school level variables)
- An aggregate variable: “x 2 bar j” is the % of pupils on free school meals in each school
- A true school level variable: “x 3 j” is whether the school built in the last 50 years.
Cross level interactions

\[y_{ij} = \beta_0 + \beta_1 x_{1ij} + \beta_2 \bar{x}_{2j} + \beta_3 x_{1ij} \times \bar{x}_{2j} + u_j + e_{ij} \]

- Cross level interactions allow us to investigate the effect of an explanatory variable on the response in the context of another explanatory variable.
- e.g. the relationship between exam score at 11 and exam score at 16 in the context of % free school meals in the school.
- Multilevel framework has powerful substantive use.
A small value of ρ

ρ measures extent of clustering (similarity of y) groups: known as intra class correlation.
A large value of ρ

- High clustering
$\rho = 1$
\(\rho = 0 \)

- no clustering
- single level regression model could be used
Patterns of intercepts and slopes

Single level model

Random int. model
Patterns of intercepts and slopes: random slopes model (1)
Patterns of intercepts and slopes: random slopes model (2)

(b) σ_{u01} negative
Patterns of intercepts and slopes: random slopes model (3)

(c)

\[\sigma_{u01} = 0 \]
Web / Books

- http://www.cmm.bristol.ac.uk
Acknowledgement

• Acknowledgement: graphs in this presentation adapted from Centre for Multilevel Modelling, University of Bristol teaching materials: www.cmm.bristol.ac.uk