Session 1: Small area estimation introduction

Alan Marshall
ESDS Government
Housekeeping

- Toilets
- Loud continuous alarm, head back up the stairs and gather on grass outside
- Lunch & coffee breaks
Today

Session 1 – Introduction
Practical (approach 1)

Session 2 – Curve fitting (approach 1)
Practical

Lunch

Session 3 - Relational models (approach 2)
Practical

Session 4 - Synthetic regression (approach 3)
Practical

Session 5 - Conclusions
Resources

C:\Work\ESDS SAE practical

<table>
<thead>
<tr>
<th>Resource</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small area estimation using ESDS Government surveys.doc</td>
<td>User guide - introduction to SAE models, associated issues and all the practicals</td>
</tr>
<tr>
<td>Health Survey for England Small area estimation teaching datasets – metadata.doc</td>
<td>Information on the data we are using today</td>
</tr>
<tr>
<td>Do files</td>
<td>Stata syntax to complete practicals</td>
</tr>
<tr>
<td>Data</td>
<td>4 data files</td>
</tr>
<tr>
<td>Presentations</td>
<td>Powerpoint presentations</td>
</tr>
</tbody>
</table>
ESDS Government

- Supports major UK data series
 - Large surveys conducted, usually by government
 - Repeated cross-sections, often continuous
 - Important, widely used microdata

- Joint service
 - Team at UK Data Archive receive and archive data
 - Team at Manchester deal with users
 - Registration for the data managed by ESDS centrally
Role

- Promoting the use of the data
- Navigating users through the *right* materials
- Creating additional materials to help users discover datasets and supporting materials
- Encouraging good practice
- Bridging the gap between data collector and users
Key supported datasets

- General Household Survey
- Labour Force Survey
- Health Survey for England/Wales/Scotland
- Family Expenditure Survey
- British/Scottish Crime Survey
- Family Resources Survey
- National Food Survey
- Expenditure and Food Survey
- ONS Omnibus Survey
- Survey of English Housing
- British Social Attitudes
- National Travel Survey
- Time Use Survey
- Vital Statistics for England and Wales
This session

- Why do we need small area estimation techniques?
- General small area estimation strategy
- The Health Survey for England (HSE)
- The datasets we will use today
- Calculating rates of disability from microdata
- Practical
Why do we need small area population data?

- Detailed local information on the population of subnational areas (e.g. wards, districts) informs:
 1. how resources are allocated between areas
 2. the nature of local service provision
 3. Identification of areas for specific area-based policy interventions
 4. The success of policies over time

- Equality: Local population information is important because the socio-demographic characteristics of subnational areas vary widely across the UK
Why do we need small area estimation techniques?

- Some data sources are reliably available for local areas

- **But** these are usually aggregate and lack detail (Census, administrative statistics, mid year estimates)

- ESDS Government survey data contain detailed information on individuals (or households)

- **But** survey data is either not available or is unreliable for subnational areas due to small sample sizes
Why do we need small area estimation techniques?

- Census gives aggregate counts of socio-demographic characteristics: limiting long term illness, occupation, social class, age, sex

- But it does not tell us about: specific health problems/disabilities, smoking, drinking, obesity, charitable giving, income
General strategy

• Combine survey data (rich data detail but not geography) with aggregate data (detailed geography but lacking detailed data)

• Three techniques are introduced here to generate estimates of specific disabilities for six districts in the UK by combining Census and HSE data:

1. Curve fitting
2. Relational models
3. Synthetic regression
Small area estimation - disability

- We don’t know how many people have different disability types for districts
- Local estimates require statistical models
- Can derive local estimates using national age specific rates (HSE) and the local population age structure (Census)

BUT this does **not** account for the variation in local disability prevalence that remains after accounting for differing age structures
General strategy

• Disability is linked to characteristics other than age that are provided for local areas in the census

• E.g. LLTI increases the risk of having a personal care disability

 If two districts with same age structure
 But one has higher level of LLTI
 Then we would expect higher levels of personal care disability
Administrative & Census geographies

- Nested hierarchy

Nation (England & Wales) →
Government Office Region (9) →
County → Local Government (376) →
Ward (8,850) →
Output Area (175,434)

Slide provided by Paul Norman – Leeds University
Auxilliary information

<table>
<thead>
<tr>
<th>Source</th>
<th>Further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Census</td>
<td>Wide range of socio-demographic Variables. Available from Nomis</td>
</tr>
<tr>
<td>Mid-year estimates</td>
<td>Population counts by age and sex. Published by National Statistical agencies (ONS, GROS, NISRA)</td>
</tr>
<tr>
<td>Administrative statistics</td>
<td>Benefit claimants, vital statistics, free school meals</td>
</tr>
</tbody>
</table>
The Health Survey for England
The Health Survey for England

- Commissioned by The NHS Information Centre for health and social care and conducted by NatCen and UCL
- Key indicators for health (used by govt)
- Annual since 1991 (children since 1995)
- Cross-sectional: snapshot data
- Sample data
- Computer-assisted personal interviewing (CAPI) & CASI face-to-face interview followed by a nurse visit for a clinical examination
The Health Survey for England

Topics:

Core questions each year plus topic modules

Sample size, design and questionnaire vary to reflect topic e.g.----------

2000 Older people, disability

2001 Disability

2002 Children and young people
2003 cardiovascular disease
2004 ethnic minority groups
2005 older people
2006 cardiovascular disease
2007 knowledge and attitudes
2008 physical activity and fitness

Changes to Health and Social Care Survey in 2011
Disability in the HSE

<table>
<thead>
<tr>
<th>Disability</th>
<th>Question (example)</th>
<th>Severity scoring</th>
</tr>
</thead>
</table>
| Locomotor | What is the furthest you can walk on your own without stopping and without discomfort? | Only a few steps = 2
More than a few steps but less than 200 yards = 1
200 metres or more = 0 |
| Personal Care | Can you get in and out of bed on your own? | Only with someone to help = 2
With some difficulty = 1
Without difficulty = 0 |
| Sight | Can you see well enough to recognise a friend at a distance of four metres (across a road)?
If no can you recognise a friend at a distance of one metre (at arm's length)? | Cannot recognise a friend at one metre = 2
Can recognise a friend at one metre but not at four metres = 1
Can recognise a friend at four metres = 0 |
| Hearing | Is your hearing good enough to follow a TV programme at a volume others find acceptable?
If not, can you follow a TV programme with the volume turned up? | Cannot follow a TV programme even with the volume turned up = 2
Can follow a TV programme with the volume turned up = 1
Can follow a TV programme a normal volume = 0 |
Sample design

Sampling frame – Postcode address file

PSU – Postcodes

PSU’s stratified by LA and within LA by the % of hh with a non-manual head of household

Systematic sample of households drawn from each selected postcode.

All adults in selected households interviewed. Up to 2 children aged 0-15 included in the survey

HSE 2000 includes a boost sample of older people in residential homes
Sampling variables

- There are three variables that give information on sampling design:

1. **Weight (weighting variable)**
2. Area (PSU variable)
3. Cluster (Stratification variable)

- Disproportionate sampling
- Standard errors – complex survey design
HSE (2000/2001) dataset

- Sex
- Age
- Gora (government office region)
- Weight (account for disproportionate sampling of children and older people)
- Year (survey year – 2000 or 2001)

- Disab (overall disability)
- Pcare (personal care disability)
- Mobility (mobility disability)
- Sight (sight disability)
- LLTI (limiting long term illness)

For more information see the teaching datasets documents.
Practical datasets

- There are 3 aggregate datasets
- Counts of population and rates of LLTI/disability distinguishing sex and single year of age
- The aggregate data is either derived from the HSE and/or taken from the Census
- The aggregate datasets distinguish 6 casestudy districts (Barnet, Bury, Wakefield, South Bucks, Easington and Stroud)
Working through practicals

- All the practicals are in the user guide.
- Can copy syntax (bold) or use the do files (C:\ESDS SAE practical\Do files)
- Some explanation of the syntax is in the do files but the user guide contains more detailed instructions
- Additional tasks (italics)
Practical 1 (part 1)

- This practical (tasks 1-2 p27-33) demonstrates how to calculate rates of disability from HSE microdata (data on individuals)
- Calculate *schedules* of disability rates for England
- Valuable because we can multiply disability rates by local population counts to generate estimates of disability counts
- Discuss some of the key points of the practical
Schedule of mobility disability rates

Mobility disability schedule
HSE 2000/01

Proportion vs Age
Calculating disability rates

- All types of disability are binary (0=no disability, 1=has disability)

- To estimate a rate of disability we calculate the mean of the disability variable:
Calculating prevalence rates - casestudy

<table>
<thead>
<tr>
<th>ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Mean = total pop with a mobility disability / total pop

Mean = 3/6 = 0.5
Calculating rates in stata

- mean mobility if age==35 & sex==1 [pweight=weight]

- Pweight weights our data to account for disproportionate sampling of the elderly and children
Creating a variable containing age and sex specific rates

- Normally we would use egen with the mean command:

 `egen mob_rt=mean(mobility), by(age sex)`

- This creates a new variable that contains the rate of mobility disability for each single year of age for males and females

- However egen cannot be used with pweights
Calculating weighted rates (without egen)

Disability Rate = \(\frac{\text{Total with a disability}}{\text{Total population}} \)

Weighted rate = \(\frac{\text{Weighted total with a disability}}{\text{Weighted total population}} \)

Weighted count = 1*weight
Calculating weighted rates (without *egen*)

<table>
<thead>
<tr>
<th>ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility disability</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Weighted mobility total</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Weighted population total</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Rate = 3/6 = 0.5
Weighted rate = 1.5/4.5 = 0.33
Stata syntax – creating disability schedules

Create weighted counts:
- `gen mobpop_wt=weight*mobility`
- `gen pop_wt=1*weight`

Create age and sex specific population totals
- `egen mobtot=total(mobpop_wt), by (age sex)`
- `egen poptot=total(pop_wt), by (age sex)`

Create age/sex specific rates:
- `gen mob_rt=mobtot/poptot`