# Formatting and organising research data 

Research Data Management Support Services UK Data Service<br>University of Essex

April 2014

[^0]
## Overview

- File formats
- File conversions
- Organising files and folders
- File naming
- Version control and authenticity


## Can you understand/use these data?




## File formats

Digital data can take countless different form(at)s...

A file format is a specific way of structuring information so that a machine, and therefore a person, can understand it

- should be readable by as many types of system as possible

- without compromising the purpose of the data


## File formats

Choice of software format for digital data:

- planned data analyses
- software availability/cost
- hardware used - e.g. audio capture
- discipline-specific standards and customs

Digital data is software dependent, so endangered by obsolescence of software/ hardware

Best formats for long-term preservation:

- standard, interchangeable, open
- e.g. tab-delimited, comma-delimited (CSV), ASCII, RTF, PDF/A, OpenDocument format, SPSS portable, XML
- UK Data Archive optimal file formats for various data types
- Digital Preservation Coalition guidance on preservation formats.tataserice


## File format conversions

Convert data for preservation or back-up:

- export
- save as
- scripts

Beware of conversion errors or losses:

- loss of internal metadata
e.g. convert mp3 audio to ogg
- loss of editing, formatting, formulae e.g. convert DOCX to RTF; XLSX to CSV
- truncation or loss of values
e.g. string variables lost in SPSS - Stata conversion; MS Access memo fields truncated in conversion to CSV

Check for errors and changes after conversion

## Example: format conversion

|  | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | Timber volume | in m 3 |  |  |  |
| 2 | Year | 1994 | 1995 | 1996 | 1997 | 1998 |
| 3 | Date recorded | 20/01/1995 | 23/01/1996 | 11/01/1997 | 16/01/1998 | 14/12/1998 ${ }^{1}$ |
| 4 | Logging private land | 20346.345 | 47005.223 | 26001.754 | 11468.897 | 0.000 |
| 5 | Logging forest reserves | 4060.567 | 1777.783 | 804.997 | 0.000 | 3329.653 |
| 6 | Logging state land | 0.000 | 1200.000 | 559.162 | 2077.567 | 358.935 |
| 7 | Total | 61119.912 | 87065.006 | 64802.913 | 51354.464 | 5686.588 |
| 8 |  |  |  |  |  |  |
| 9 |  | Data missing |  |  |  |  |
| 10 |  | Estimate |  |  |  |  |
| 11 |  |  |  |  |  |  |
| 12 | ${ }^{1}$ temporary volumes |  |  |  |  |  |

MS Excel (.x|sx) format


Tab-delimited text format

## Example: format conversion

Different formats store date values in different ways, and format conversion can wreak havoc with these.
e.g. 21:55 on the $21^{\text {st }}$ April 2013 can be stored as:

- 1366581312

Unix time - seconds elapsed since midnight 1 January 1970
or

- 2013-04-21T21:55:12Z

ISO 8601 time - and international standard for representing time and date stamps

## Quality assurance

Quality assurance procedures should be undertaken throughout the research process, ensuring data are:

- clean
- verified
- validated

Depending on the type of data, you may be able to automate aspects of this process using:

- statistical software to check e.g. frequencies on quantative data
- consistency checking with data manipulation tools like OpenRefine

Qualitative data collectors in for a harder time - manual proofreading

## Can you understand these data?

| SrvMthdDraft.doc | 匈 |
| :--- | ---: |
| SrvMthdFinal.doc |  |
| SrvMthdLastOne.doc | SrvMthdRealVersion.doc |

## Organising data

Plan in advance how best to organise data
Use a logical structure and ensure collaborators understand

## Examples

- hierarchical structure of files, grouped in folders, e.g. audio, transcripts and annotated transcripts
- measurement data - original, processed, analysed etc.
- interview transcripts - individual well-named files



## File naming

- file name = principal identifier of file
- use logical naming i.e. easy to identify and retrieve the file
- naming provides organisation, context \& consistency
- name elements: version number, date, content description, creator name

Best practice

- name independent of location
- relevant to content
- no special characters, dots or spaces
- for separation use underscores _
- versioning via filename: ascending, decimal version numbers
- avoid very long file names


## Directory structure



## Version control

- Keep track of different copies or versions of data files
- Useful for files kept in multiple locations
- Or which have multiple users
- A way to safeguard against accidental changes
- File names are a good way to do this
- Unique descriptive names for files
- Include date and/or version number in name
- Indicate relationships between files
e.g. FoodInterview_1_draft; FoodInterview_1_final; HealthTest_06-04- 2008; BGHSurveyProcedures_00_04


## Example: version control table

| Title: |  | Vision screening tests in Essex nurseries |  |
| :---: | :---: | :---: | :---: |
| File Name: |  | VisionScreenResults_00_05 |  |
| Description: |  | Description of the data files ....... |  |
| Created By: |  | Chris Wilkinson |  |
| Maintained By: |  | Sally Watsley |  |
| Created: |  | 04/07/2007 |  |
| Last Modified: |  | 25/11/2007 |  |
| Based on: |  | VisionScreenDatabaseDesign_02_00 |  |
| Version | Responsible | Notes | Last amended |
| 00.05 | Sally Watsley | Version 00_03 and 00_04 compared by SW | 25/11/2007 |
| 00_04 | Vani Yussu | Entries checked by VY, independent from previous | 17/10/2007 |
| 00_03 | Steve Knight | Entries checked by SK | 29/07/2007 |
| 00_02 | Karin Mills | Test results 81-120 entered | 05/07/2007 |
| 00_01 | Karin Mills | Test results 1-80 entered | 04/07/2007 |

## Example: Google Drive version control

- Collaboratively edit documents in 'the cloud' while tracking version history

| N8 Group <br> mandatory |  |  |  |  |  | ReCollect (University of Essex / UK D |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | ReCollect <br> obligation | EPrints schema | Single / multi <br> instance |  |  |  |  |  |
|  | Mandatory | Eprints | Single | Free text |  |  |  |  |  |
|  |  | Automatic | Eprints | Single |  |  |  |  |  |
|  | Mandatory | Eprints | Single | Free text |  |  |  |  |  |
|  | Mandatory | Eprints | Multi | Controlled vocab |  |  |  |  |  |
|  | Mandatory | Eprints | Multi | Controlled list |  |  |  |  |  |
|  | Automatic | Eprints | Single | Controlled list (ace |  |  |  |  |  |


| Revision history | $\times$ |
| :---: | :---: |
| 06/12/2013, 10:18 am United Kingdom Time <br> anonymous |  |
| 06/12/2013, 9:34 am United Kingdom Time <br> anonymous <br> Restore this revision |  |
| 28/11/2013, 4:43 pm United Kingdom Time ■ anonymous |  |
| 28/11/2013, 4:19 pm United Kingdom Time <br> - Tom Ensom |  |
| 26/11/2013, 4:37 pm United Kingdom Time ■ anonymous |  |

## Version control

Multiple users of data files

- control rights to file editing: read/write permissions


## e.g. Windows Explorer

- versioning/file sharing software: check files out/in
e.g. SharePoint, CMS, Google Docs, Amazon S3
- manual merging of multiple entries/edits

Synchronise files

- software
e.g. MS SyncToy
- command line
e.g. robocopy, rsync
- web-based
e.g. DropBox, Google Drive




## Digitisation of data

Non-digital data can (and should!) be digitised.
Approach dependent on situation

- e.g. type of data, resources availably, purpose of digitisation

Some general notes:
Photographs

- scan and save as TIFF

Maps

- scan, georeference using GIS software, and save as GeoTIFF Audio e.g. audio recording
- capture as WAV

Video

- video formats complex, take care when digitising/converting to avoid degradation and errors


## Digitising textual data

Text - more complex, with tiers of digitisation:
Create image file

- scan (or photograph) and save as TIFF image file
- used for poor typeface, handwritten materials, text with tables \& graphs

Create searchable PDF

- collate TIFFs and convert to PDF
- bookmark PDF file for navigation: contents page, headings \& metadata

Create rich text using Optical Character Recognition (OCR)

- automatically convert TIFF to RTF format
- requires rigorous proof reading and checking

Transcribe manually

- represent the original material as closely as possible
- avoid using formatting in data files


## Data transcription

- translation between forms
- all transcription is:
- representational
- selective - can be multiple-perspective for video
- interpretive
- theoretical


## Transcription template

Should:

- possess a unique identifier
- adopt a uniform layout throughout the research project
- make use of speaker tags - turn-taking
- carry line breaks
- be page numbered
- carry a document header giving brief details of the interview: date, place, interviewer name, interviewee details, etc.

Other considerations:

- cover page
- compatibility with import features of Computer Assisted Qualitative Data Analysis Software (CAQDAS)


## Transcription issues

- what to transcribe?
- verbal and non-verbal?
- turn-taking?
- 'interruptions'
- who does it - researcher, service?
- implications of technologies - video, multiple camera, screen capture, webcams


## Transcription and data sharing

- added issues to consider when transcribing for data sharing
- in what format will the transcript be accessed?
- paper
- digital file
- web
- standalone or part of collection
- who will be reading the transcript?
- need for more/different contextual information ('metadata') for secondary users?
- exposes the researcher's practices


## Demo: Bulk Rename Utility



## Contacts

Collections Development team UK Data Service University of Essex<br>datasharing@ukdataservice.ac.uk


[^0]:    UKDataService

