Organising, storing and securely handling research data

Scott Summers
UK Data Service
University of Essex

Managing, sharing and archiving social science research data
15th June 2016
Overview

• Looking after research data for the longer-term and protecting them from unwanted loss requires having good strategies in place for:
 • securely storing
 • backing-up
 • transmitting/encrypting
 • and disposing of data

• Collaborative research brings additional challenges for the shared storage of, and access to, data
Stuff happens!
Stuff happens: data inferno

- A fire destroyed a University of Southampton research centre resulting in significant damage to data storage facilities

- What if this was your university, your office or your data?
- Source: BBC
Stuff happens: fieldwork nightmares

• “I’m sorry but we had to blow up your laptop.”

• “What….all my client case notes and testimony, writing, pictures, music and applications. Years of work. NO!!!!”

• Source: https://lilyasussman.com
Stuff happens: data theft

- What would happen if you lost your data?
- Imagine if you lost four years worth of research data - this nightmare situation happened to Billy Hinchen

https://www.youtube.com/watch?v=3xlax_lin0Y

- Source: https://projects.ac/blog/the-stuff-of-nightmares-imagine-losing-all-your-research-data/
Organising and storing data
Organising data

- Plan in advance how best to organise data
- Use a logical structure and ensure collaborators understand

Examples
- hierarchical structure of files, grouped in folders, e.g. audio, transcripts and annotated transcripts
- survey data: spreadsheet, SPSS, relational database
- interview transcripts: individual well-named files
Data storage

- Local storage
- University and collaborative storage
- Cloud storage
- Data archives or repositories
Local data storage

- Internal hard drive/flash drive
- Note that all digital media are fallible
- Optical (CD, DVD & Blu-ray) and magnetic media (hard drives, tape) degrade over time
- Physical storage media become obsolete e.g. floppy disks

- Data files should be copied to new media every two-to-five years after they are first created
University and collaborative storage

- Your university or department may have options available. For example:
 - Secure backed up storage space
 - VPN giving access to external researchers
 - Locally managed Dropbox-like services such as OneDrive and Essex ZendTo
 - Secure file transfer protocol (FTP) server

Sharing data between researchers
- Too often sent as insecure email attachments
- Physical media?
- Virtual Research Environments
 - MS SharePoint
 - Clinked
 - Huddle
 - Basecamp
Cloud storage services

- Online or ‘cloud’ services are becoming increasingly popular
- Google Drive, DropBox, Microsoft OneDrive and iCloud

Benefits:
- Very convenient
- Accessible anywhere
- Good protection if working in the field?
- Background file syncing
- Mirrors files
- Mobile apps available

But,
- These are not necessarily secure
- Potential DPA issues
- Not necessarily permanent
- Intellectual property right concerns?
- Limited storage?
Cloud storage services

- Perhaps more secure options?

Mega.nz SpiderOak Tresorit

- Cloud data storage should be avoided for high-risk information such as files that contain personal or sensitive information, information or that has a very high intellectual property value.
File sharing – data archive or repository

• A repository acts as more of a ‘final destination’ for data
• Many universities have data repositories now catering to its researchers, e.g. Research Data Essex
• UK Data Service has it’s own service called ‘ReShare’, for social science data of any kind
• http://reshare.ukdataservice.ac.uk/
Backing-up data
Backing-up data

- It is not a case of *if* you will lose data, but *when* you will lose data!
- Keep additional backup copies and protect against: software failure, hardware failure, malicious attacks and natural disasters
- **Would your data survive a disaster?**
Digital back-up strategy

Consider

• **What’s backed-up?** - all, some or just the bits you change?
• **Where?** - original copy, external local and remote copies
• **What media?** - DVD, external hard drive, USB, Cloud?
• **How often?** - hourly, daily, weekly? Automate the process?
• **What method/software?** - duplicating, syncing or mirroring?
• **For how long is it kept?** - data retention policies that might apply?
• **Verify and recover** - never assume, regularly test and restore

Backing-up need not be expensive

• 1Tb external drives are around £50, with back-up software

Also consider non-digital storage too!
Verification and integrity checks

- Ensure that your backup method is working as intended
- Automated services - check
- Be wary when using sync tools in particular
 - Mirror in the wrong direction or using the wrong method, and you could lose new files completely

- You can use **checksums** to verify the integrity of a backup
- Also useful when transferring files
- Checksum somewhat like a files’ **fingerprint**
- …but changes when the file changes
Checksums

- Each time you run a checksum a number string is created for each file

- Even if one byte of data has been altered or corrupted that string will change

- Therefore, if the checksums before and after backing up a data file match, then you can be sure that the data have not altered during this process

- A free software tool for computing MD5 checksums is MD5summer for windows

- We will run through a demonstration of this later
Data security
Data security

Protect data from unauthorised:
- Access
- Use
- Change
- Disclosure
- Destruction

Who knows who is watching, listening or attempting to access data…
Data security strategy

• Control access to computers:
 • use passwords and lock your machine when away from it
 • run up-to-date anti-virus and firewall protection
 • power surge protection
 • utilise encryption
 • on all devices: desktops, laptops, memory sticks, mobile devices
 • at all locations: work, home, travel
 • restrict access to sensitive materials e.g. consent forms and patient records
 • personal data need more protection – always keep them separate and secure

• Control physical access to buildings, rooms and filing cabinets

• Properly dispose of data and equipment once project is finished
Encryption

- Encryption is the process of encoding digital information in such a way that only authorised parties can view it.

- **Always** encrypt personal or sensitive data
 - = anything you would not send on a postcard
 - e.g. moving files, such as interview transcripts
 - e.g. storing files to shared areas or insecure devices

- Basic principles
 - Applies an algorithm that makes a file unreadable
 - Need a ‘key’ of some kind (passphrase or/and file) to decrypt

- The UK Data Service recommends Pretty Good Privacy (PGP)
 - More complicated than just a password, but much more secure
 - Involves use of multiple public and private keys
Encryption software

Encryption software can be easy to use and enables users to:

• encrypt hard drives, partitions, files and folders
• encrypt portable storage devices such as USB flash drives

VeraCrypt BitLocker

Axcrypt FileVault2

We will run through a demonstration of VeraCrypt later
Data disposal

• When you delete a file from a hard drive, it is likely to still be retrievable (even after emptying the recycle bin)

• Even reformatting a hard drive is **not** sufficient

• Files need to be overwritten multiple times with random data for best chances of removal

• The **only** sure way to ensure data is irretrievable is to physically destroy the drive (using an approved secure destruction facility)
Data disposal software

- **BCWipe** - uses ‘military-grade procedures to surgically remove all traces of any file’
 - Can be applied to entire disk drives

- **AxCrypt** - free open source file and folder shredding
 - Integrates into Windows well, useful for single files

- Physically destroy portable media, as you would shred paper
Summary of best practices in data storage and security

- Have a personal backup and storage strategy: (a) store an original local copy; (b) external local copy and (c) external remote copy
- Copy data files to new media every two-to-five years after first created
- Know your institutional back-up strategy
- Check data integrity of stored data files regularly (using checksums)
- Create new versions of files using a consistent and transparent system structure
- Encrypt data – especially when sensitive or transmitting and sharing
- Know data retention policies that apply: funder, publisher, home institution
- Archive data and securely destroy data where necessary
Resources

UK Data Service Website resources
• Organise data - https://www.ukdataservice.ac.uk/manage-data/format/organising
• Data storage - https://www.ukdataservice.ac.uk/manage-data/store/storage
• Data security - https://www.ukdataservice.ac.uk/manage-data/store/security
• Data encryption - https://www.ukdataservice.ac.uk/manage-data/store/encryption
• Data backup - https://www.ukdataservice.ac.uk/manage-data/store/backup
• Checksums - https://www.ukdataservice.ac.uk/manage-data/store/checksums
• File sharing - https://www.ukdataservice.ac.uk/manage-data/store/file-sharing
• Data disposal - https://www.ukdataservice.ac.uk/manage-data/store/disposal
• Further resources - https://www.ukdataservice.ac.uk/manage-data/store/disposal

Video Tutorials
• VeraCrypt - https://www.youtube.com/watch?v=Ogm9QHQpFqU
• AxCrypt - https://www.youtube.com/watch?v=ACcRInsoYZg
• FileVault 2 - https://www.youtube.com/watch?v=JIZ9EFMS0ic
• Time Machine - https://www.youtube.com/watch?v=hIsQaVj7WtA
• MD5 Summer - https://www.youtube.com/watch?v=VcBfkB6N7-k
Questions?